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Summary 
The central idea of this paper is that by rigorous analysis of the time series data on migration, births and deaths, one can 
build valid statistical models, which can then be used for calculating point estimates and prediction intervals of future 
values of population components.  
The problem of outliers and/or extreme values arises in two types of data during this process: (i) values of 
migration (age-) time series in presence of strongly fluctuating exogenous, economic or social, variables; (ii) values of 
age-time series of mortality and fertility rates, where age is the age of death for mortality data and age of mothers for 
fertility data respectively. In addition, one has to analyse and give consistent forecasts of the net migration but also of its 
components like immigration and emigration by sex, citizenship and possibly other attributes. We describe our solutions 
to such challenges which consist of: 

(i) modeling the non-stationary and auto-correlated time series and the impact of extreme values using: 
i1) vector autoregressive distributed lags and general ARIMA models for short and long term migration 
components respectively, as well as an optimal combination approach for components’ hierarchy 
i2) functional data models (introduced by Hyndman in 2007) for fertility and mortality rates which use 
time series coefficient functions in orthonormal function expansions of the rates and which is robust with 
respect to extreme values 

(ii) detecting and identifying the types of outliers/extreme values in migration series and associated exogenous 
variables, by hypotheses testing using the distributions of problem dependent models’ residuals 

(iii) calculating prediction intervals for population components and the probability of future shocks for 
migration components 

The source of our demographic data is the Icelandic National Register, while the social and economic data and short 
term predictions are provided by Statistics Iceland. All time series are 45 years long.  

  
1 [Prepared by Violeta Calian, Senior Statistician]. 

  Working paper 1  

  Distr.: General 
30 March 2016 
 
English only 



2 

 

I. Introduction 

1. Population projections and forecasts are important for a wide spectrum of 
users, due to the social and economic impact of demographical changes. The 
methods used by Statistics Iceland have been improved continuously in recent 
years, in order to find solutions to recent data challenges. We focus in this paper on 
the way we use statistical models and hypothesis testing in order to provide 
predictions for population components, given strongly fluctuating, non-stationary 
and auto/cross-correlated time series data with extreme values and/or outliers. We 
analyse two types of problems encountered when forecasting: (i) the fertility and 
mortality rates and (ii) the (vector of-) migration components respectively. 

2. Data on number of births by age of mothers and number of deaths by age 
and sex poses some challenges when calculating fertility, mortality rates and life 
tables. The main reason consists of zero counts for very small or very high ages. 
This happens due to the small size of the population and to the fact that most of 
these counts refer to rare events.  

3. Standard solutions to such problem are to aggregate data over several years 
or to borrow data from similar and bigger populations, such as from other Nordic 
countries. Borrowing data is limited by the type of analysis though, and needs to be 
preceded by a proof of validity, i.e. testing hypotheses about the distributions of the 
needed variables in the populations.   

4. Theoretically, a most reliable solution consists of calculating the probability 
of these rare events, based on their distributions most likely obtained by using 
bootstrap. This analysis is ongoing. The practical method we use at the present 
time is described in the following section and is based on smoothing and 
orthonormal expansions, in the context of functional data modelling of the rates. 

5. The migration data presents the problem of hierarchical/grouped time series. 
One has to give consistent forecasts of the net migration but also of its components 
like immigration and emigration by sex, citizenship and possibly other attributes. 
In addition, strongly fluctuating data contains outliers, i.e. values generated by 
different underlying processes, and real life distributions of migration data often 
have significant tails, i.e. extreme values.  

6. Therefore, before modelling migration we test a set of hypotheses, 
appropriately adjusting for multiple comparisons.  They are related to the presence 
of outliers in: a) the time series of the net or various migration components as well 
as in b) the age patterns. The tests are based on estimates and confidence intervals 
of model parameters for: a) the stationary time series of migration rate differences 
and b) the stationary and ergodic processes underlying the age group processes. 
The empirical distributions of extreme values allow us to estimate probabilities of 
future extreme events. Our migration models for short term forecasting are joint 
(vector) auto-regressive distributed models, described in the next section. They 
take into account the hierarchical structure, complex correlations and non-
stationarity of the migration components and influencing external factors. 
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II. Modelling solutions 

a) Fertility and mortality rates 
7. Let 𝑦(𝑡, 𝑥) denote the log of the observed mortality or fertility rate for age 𝑥 
and year 𝑡. In general, we could assume there exists an underlying smooth function 
𝑓(𝑡, 𝑥) which is observed with error and at discrete points (𝑡𝑖, 𝑥𝑎) of a (time-age) 
two-dimensional domain, giving the values {𝑡𝑖,𝑥𝑎 , ; 𝑦𝑖𝑎}, with 𝑖 = 1, . . . ,𝑁 and 
𝑎 = 𝑀0, . . . ,𝑀. We need to predict  𝑦(𝑡, 𝑥) for the same set of age values 𝑥𝑎 
(𝑎 = 𝑀0, . . . ,𝑀) and for years 𝑡𝑖 (𝑖 = 𝑁 + 1, . . . ,𝑁 + ℎ), where ℎ is the length of 
the forecasting horizon. Due to the asymmetry of the age-temporal domain in a 
forecasting context, to consistency issues and correlations of the rates across time 
and age values, it is difficult to find a parametric model for the (vector-) function 
𝑓(𝑡, 𝑥) without using simplifying assumptions. Ideally, a general decomposition of 
the (smooth) function should be 𝑓(𝑡, 𝑥) =∑ 𝜔𝑗,𝑏𝜑𝑗,𝑏𝑗,𝑏  (𝑡, 𝑥), with 𝜑𝑗,𝑏 being 
functions of an orthonormal basis over the bi-dimensional age-time domain. 

8. A simpler and more efficient form is given by the factorization: 
𝑓0(𝑡, 𝑥)=∑ 𝛽𝑘(𝑡)𝜑𝑘𝑘=1,…𝐾  (𝑥), where the number of orthogonal functions 𝐾 is 
reasonably small, and this is the solution proposed by Hyndman (2007, 2008), it is 
robust to outliers, and it has been tested in a sufficiently extensive way. In this case 
the observations are modelled as: 𝑦𝑖𝑎 = µ(𝑥𝑎) + 𝑓0(𝑡𝑖, 𝑥𝑎) +  e𝑡𝑖(x𝑎)  +
 α𝑡𝑖(x𝑎)ε𝑡𝑖,𝑥𝑎, where µ(𝑥) is the mean of 𝑓0(𝑡, 𝑥) across time (years), e𝑡(x) is the 
residual modelling error (assumed serially uncorrelated), the coefficient functions 
𝛽𝑘(𝑡) are independent (by construction), ε𝑡,𝑥 represents the random variation in 
birth or death rates and α𝑡(x) allow the variance to change with age and time. 

9. The method has several steps: 

1) Smoothing the raw data, i.e. log of crude mortality or fertility rates, by 
using spline functions with constraints on concavity and monotonicity, as 
functions of time and age. This reduces the observational noise. 

2) Expressing the smooth functions as series expansions over a basis of 
orthonormal functions (f0(t, x)) above). Fitting time series models for the 
coefficient functions βk(t) of these series expansions and using these models 
for forecasting. 

3) Using the forecast values of the coefficients to predict the values of the 
smooth functions and thus to predict mortality or fertility rates. Calculate 
prediction intervals based on the estimated variances of the error terms of 
step 1 and step 2. 

10. The results are as follows: 
(i) Figure 1 shows the past and forecast values of fertility rates by age. The 
variation due to orthonormal basis functions used in modelling is: 76.4%, 
15.3%, 3.7%, 1.4%, 0.8% and 0.7%. We see that the increase in mothers’ 
modal age with time will continue in the next 50 years. It is also clear that 
the fertility is predicted to decline for almost 30 years and then slightly 
increase again. This increase is due to the local peak in birth rate which 
occurred in 2008-2010 and to the average age (around 30 years) of mothers. 
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(ii) Figures 2 and figure 4 show the mean age pattern, the orthogonal basis 
functions and model coefficients for female and male mortality rates, 
respectively. The variation due to orthonormal basis functions is: 79.1%, 
9.4%, 3.9%, 2.7%, 1.9%, 1.0% for the female model and 89.0%, 3.3%, 
2.6%, 1.5%, 1.2%, 0.9% for the male model. The residuals (visualised in 
Figures 3 and 5) prove that we can use the fitted models to make predictions 
for future values of the mortality rates. The first coefficient function and 
basis function show in both cases that the mortality has consistently 
decreased over time but the speed of this improvement depends on age. Thus 
very small ages and people 40 to 80 years old are the main beneficiaries of 
the trend, a similar conclusion to another population analysed with the same 
method (Hyndman (2008)). In Figures 6 and 7, the past and forecast of 
female and male logarithm death rates are represented. We notice again the 
way the decrease in mortality over time depends on age but also that 
mortality changes are smaller around young adult ages than older. 

(iii) For both fertility and mortality rates we obtain short and long term 
forecasts, i.e. point estimates and prediction intervals, based on functional 
data models with time series coefficients, which do not depend on 
exogenous variables or any subjective inputs.  

11. In the case of fertility rates we also have three variants for the long term 
values, given by expert assumptions. The difference between the forecast point 
estimate and the medium value assumption is of the order of 10−2 and the 
differences between the lower/upper bounds of the prediction intervals and the 
low/high values given be experts are of the order of10−1. Therefore, for the long 
term, our prediction intervals are smoothly connected to the expert assumption 
values. In the long term, total fertility rates are expected to converge to 1.8, 1.95 
and 2.1 for the low, medium and high variants, respectively. 

 

b) Migration rates 
(i)  Short term migration 

12. We use the vector generalization of auto-regressive distributed lag models 
for the auto-correlated and non-stationary time series involved in migration 
processes, in order to give valid point estimates and prediction intervals of 
migration rates. We obtain short time predictions for the net migration and for the 
number of immigrants/emigrants of Icelandic and foreign citizenships as functions 
of several time series predictors: unemployment, change in GDP values, number of 
graduating high school students and dummy variables mirroring the EEA resizing 
in time and the Icelandic economic boom which ended in 2008. 

13. We have built, in a parsimonious way, the vector dynamical model 
𝑦(𝑡)~𝑦(𝑡 − 𝑗) + 𝑥(𝑡 − 𝑙) where 𝑦 and 𝑥 are vectors of migration components and 
of exogenous variables. The vector components have similar forms, i.e. 
𝑦𝑖(𝑡)~ ∑𝑦𝑘(𝑡 − 𝑗) +∑𝑥𝑝 (𝑡 − 𝑙) , where 𝑗 = 0,1,2, … up to maximum lag order in 
dependent variables, and 𝑙 = 0,1, … up to maximum lag order in exogenous 
variables. 

14. We use the following notation - and an alternative one, for the ease of 
interpretation- for the components: 𝑦1, 𝑦2, -  (ImIceM, EmIceM) - the number of 
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Icelandic immigrants/emigrants, men; 𝑦3, 𝑦4 – (ImIceW, EmIceW) -  the number of 
Icelandic immigrants/emigrants, women; 𝑦5, 𝑦6 – (ImForM, EmForM) - the 
number of foreign immigrants/emigrants, men, 𝑦7, 𝑦8 – (ImForW, EmForW) - the 
number of immigrants/emigrants, women of foreign citizenship; 𝑥4 - UnEmpl -the 
unemployment rate; 𝑥8 - GDP, a measure of GDP, 𝑥5, 𝑥6 – (GradM, GradF), the 
number of graduating students, men and women respectively; boom – an indicator 
variable coupled to the Icelandic economic boom, reflecting also temporary 
changes in the registration process; eea – an indicator variable which reflects the 
entrance of Iceland into the EEA, and thus free movement of persons within that 
area. 

15. The models take particular simple forms, here written by using again the 
standard R notation (for dynamical models in our case) and the more meaningful 
variable names: 

𝑦1 = 𝐼𝑚𝐼𝑐𝑒𝑀(𝑡) ~𝐼𝑚𝐼𝑐𝑒𝑀(𝑡 − 1)  +  𝑈𝑛𝐸𝑚𝑝𝑙(𝑡) + 𝑈𝑛𝐸𝑚𝑝𝑙(𝑡 − 1)  +  𝐸𝑚𝐼𝑐𝑒𝑀(𝑡 − 1) 
𝑦2 = 𝐸𝑚𝐼𝑐𝑒𝑀(𝑡) ~ 𝐸𝑚𝐼𝑐𝑒𝑀(𝑡 − 1)  +  𝐸𝑚𝐼𝑐𝑒𝑀(𝑡 − 2) +  𝐺𝑟𝑎𝑑𝑀(𝑡 − 2) + 𝐸𝑚𝐼𝑐𝑒𝑊(𝑡) 
𝑦3 = 𝐼𝑚𝐼𝑐𝑒𝑊(𝑡) ~ 𝐼𝑚𝐼𝑐𝑒𝑊(𝑡 − 1) +  𝑈𝑛𝐸𝑚𝑝𝑙(𝑡)  +  𝐺𝐷𝑃(𝑡)  +  𝑈𝑛𝐸𝑚𝑝𝑙(𝑡 − 1)  +  𝐺𝐷𝑃(𝑡 − 1) 
𝑦4 = 𝐸𝑚𝐼𝑐𝑒𝑊(𝑡) ~𝐸𝑚𝐼𝑐𝑒𝑊(𝑡 − 1)  +  𝐸𝑚𝐼𝑐𝑒𝑊(𝑡 − 2)  +  𝐺𝑟𝑎𝑑𝑊(𝑡 − 2) 
𝑦7 = 𝐼𝑚𝐹𝑜𝑟𝑊(𝑡)~  𝐼𝑚𝐹𝑜𝑟𝑊(𝑡 − 1) +  𝑈𝑛𝐸𝑚𝑝𝑙(𝑡) +  𝐺𝐷𝑃(𝑡) +  𝑏𝑜𝑜𝑚(𝑡) +  𝑒𝑒𝑎(𝑡) +  𝑈𝑛𝐸𝑚𝑝𝑙(𝑡 − 1)

+  𝐺𝐷𝑃(𝑡 − 1) 
𝑦8 = 𝐸𝑚𝐹𝑜𝑟𝑊(𝑡) ~ 𝐸𝑚𝐹𝑜𝑟𝑊(𝑡 − 1)  +  𝐼𝑚𝐹𝑜𝑟𝑊(𝑡)  +  𝐼𝑚𝐹𝑜𝑟𝑊(𝑡 − 1)  +  𝑈𝑛𝐸𝑚𝑝𝑙(𝑡)  +  𝐺𝐷𝑃(𝑡)

+  𝑈𝑛𝐸𝑚𝑝𝑙(𝑡 − 1)  +  𝐺𝐷𝑃(𝑡 − 1) 
𝑦9 = 𝑦𝑛𝑒𝑡(𝑡)~ 𝑦𝑛𝑒𝑡(𝑡 − 1) + 𝑦𝑛𝑒𝑡(𝑡 − 2) +  𝑥4 + 𝑥8  + 𝑥8(𝑡 − 1) + 𝑥4(𝑡 − 1) + 𝑥8(𝑡 − 2) +  𝑥4(𝑡 − 2)  

+ 𝑥5(𝑡 − 2) + 𝑥6(𝑡 − 2)  +  𝑏𝑜𝑜𝑚 +  𝑏𝑎𝑚 + 𝑏𝑜𝑜𝑚(𝑡 − 1) +  𝑏𝑎𝑚(𝑡 − 1) 
 

16. The variables 𝑦5 and 𝑦6 were obtained directly by using the empirically 
verified correlation between men and women migration numbers and the results of 
the models 𝑦7, 𝑦8. All univariate time series of 45 years length were tested for: (i) 
stationarity, by using augmented Dickey - Fuller and Kwiatkowski – Philips – 
Schmidt - Shin (KPSS) and (ii) auto-correlation of first and higher order, by using 
Durbin-Watson and Breusch - Godfrey tests. None of these series is I(2). These are 
necessary but not sufficient conditions (see Johansen 2010), for un-biased and 
consistent point estimates and independent and identically distributed residuals. 
The auto-regressive distributed lag models can be used to test for co-integration 
and to estimate long-run and short-run dynamics, even when the variables are 
stationary and non-stationary time series models (see Calian, V., Hardarson, O. 
(2015)). Choosing the structure and the order of the ARDL model by a consistent 
model selection criterion is a crucial step, too. We have applied standard tests to 
the residuals in order to establish the stationarity, normality, autocorrelation and 
goodness of fit of the models. 

 
(ii) Long term migration 

17. Structural models perform very well on short term but their main limitation 
is that they do require data on the future values of exogenous variables. These are 
not always easy to obtain. One could use instead purely probabilistic models, but 
one can argue that it is more efficient to take advantage, at least on the short term, 
of the information regarding various factors which influence the migration process. 
A new method based on alternative modelling is not yet sufficiently tested. Such a 
method could be based on a generalization of space-time series methods to the case 
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of age-time series such as the migration components, could use functional data 
models as for the fertility and mortality rates, or could use Bayesian priors as well 
as hierarchical modelling with carefully selected distributions for the factors which 
are significant when modelling migration. We are currently investigating the 
viability of these options. 

18. We rely on both ARIMA modelling and on the expert opinion of Statistics 
Iceland’s advisory committee (on population projections) for predictions on long 
term migration. In the expert opinion, the three scenarios for the net migration are 
set by 400, 800 and 1,200 for the low, medium and high variants, respectively. In 
modelling the different migration patterns of Icelandic and foreign citizens, the 
long term net migration of Icelandic citizens is set as -800 for all variants. These 
are in very good agreement with the ARIMA point estimates and prediction 
intervals.  

III. Conclusion 

19. We have described in this paper the methodology used by Statistics Iceland 
for population projections, when using cross correlated, non-stationary time series 
data with extreme values and outliers. A detailed study of the performance of the 
employed models is the object of a future paper and it is based on using shorter 
time series in order to predict the (known) values of population components for 
recent years.  

20. The dynamical models of short term migration can still be improved, 
especially if one aims to include more informative factors connected to internal and 
external social and economic processes. We are also investigating the possibility of 
building better models for long term migration. This can be done by using 
generalised age-time (analogue of spatial-temporal) autoregressive models and/or 
by using hierarchical or Bayesian models which take into account the distributions 
of exogenous factors. The functional data approach could be also improved by 
including the resampling based estimates of the rare events together with the crude 
rates before the smoothing stage and by choosing a more general type of 
orthonormal expansions.  

21. Both classes of forecasts, functional data and dynamical model based, were 
shown to benefit from the information provided by the preliminary outlier and 
extreme value analysis. 
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Figures 
Figure 1. Fertility rates 1971–2065 

 
 
Figure 2. The basis functions and model coefficients for the female mortality rates 
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Figure 3. The residuals of the model for female mortality rates.  
Darker colours mean higher values, in positive and negative directions (red or blue colours). 

 
 
 
Figure 4. The basis functions and coefficients of the model for the mortality rates of men 

 
Figure 5. The residuals of the model for mortality rates of men 
Darker colours mean higher values, in positive and negative directions (red or blue colours). 

1970 1980 1990 2000 2010

0
20

40
60

80

Year

Ag
e

0 20 60

-8
-7

-6
-5

-4
-3

-2
-1

Main effects

Age

M
ea

n

0 20 60

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Age

Ba
si

s 
fu

nc
tio

n 
1

Interaction

Time

Co
ef

fic
ie

nt
 1

1970 1990 2010

-4
-2

0
2

4

0 20 60

-0
.4

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

Age

Ba
si

s 
fu

nc
tio

n 
2

Time

Co
ef

fic
ie

nt
 2

1970 1990 2010

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

0 20 60

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

Age

Ba
si

s 
fu

nc
tio

n 
3

Time

Co
ef

fic
ie

nt
 3

1970 1990 2010

-0
.5

0.
0

0.
5

1.
0

0 20 60

-0
.2

-0
.1

0.
0

0.
1

0.
2

Age

Ba
si

s 
fu

nc
tio

n 
4

Time

Co
ef

fic
ie

nt
 4

1970 1990 2010

-0
.5

0.
0

0.
5

0 20 60

-0
.4

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

Age

Ba
si

s 
fu

nc
tio

n 
5

Time

Co
ef

fic
ie

nt
 5

1970 1990 2010

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

0 20 60

-0
.2

-0
.1

0.
0

0.
1

0.
2

Age

Ba
si

s 
fu

nc
tio

n 
6

Time

Co
ef

fic
ie

nt
 6

1970 1990 2010

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4



10 

 
 
 
 
 
 
 
 
Figure 6. Logarithm of female death rates 1971–2065 
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Figure 7.  Logarithm of male death rates 1971–2065 
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